Properties

Label 3.12.20.54
Base \(\Q_{3}\)
Degree \(12\)
e \(6\)
f \(2\)
c \(20\)
Galois group 12T215

Related objects

Learn more about

Defining polynomial

\( x^{12} - 30 x^{11} - 18 x^{10} - 36 x^{9} - 18 x^{8} - 9 x^{7} + 15 x^{6} + 27 x^{4} - 9 x^{3} - 27 x + 18 \)

Invariants

Base field: $\Q_{3}$
Degree $d$ : $12$
Ramification exponent $e$ : $6$
Residue field degree $f$ : $2$
Discriminant exponent $c$ : $20$
Discriminant root field: $\Q_{3}$
Root number: $1$
$|\Aut(K/\Q_{ 3 })|$: $1$
This field is not Galois over $\Q_{3}$.

Intermediate fields

$\Q_{3}(\sqrt{*})$, 3.4.2.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{3}(\sqrt{*})$ $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{2} - x + 2 \)
Relative Eisenstein polynomial:$ x^{6} + 6 t x^{5} + \left(-9 t - 9\right) x^{4} + \left(12 t + 3\right) x^{3} + 9 x + 12 t - 3 \in\Q_{3}(t)[x]$

Invariants of the Galois closure

Galois group:12T215
Inertia group:Intransitive group isomorphic to $C_3^2:(C_3:S_3.C_2)$
Unramified degree:$4$
Tame degree:$4$
Wild slopes:[9/4, 9/4, 9/4, 9/4]
Galois mean slope:$241/108$
Galois splitting model:$x^{12} - 12 x^{10} - 7 x^{9} + 54 x^{8} + 63 x^{7} - 99 x^{6} - 189 x^{5} + 27 x^{4} + 206 x^{3} + 81 x^{2} - 51 x - 29$