Properties

Label 3.12.20.2
Base \(\Q_{3}\)
Degree \(12\)
e \(3\)
f \(4\)
c \(20\)
Galois group $C_2.S_3^2$ (as 12T39)

Related objects

Learn more about

Defining polynomial

\( x^{12} + 252 x^{11} - 333 x^{10} - 348 x^{9} + 27 x^{8} - 27 x^{7} - 81 x^{6} + 243 x^{5} - 324 x^{4} + 243 x^{3} + 243 x^{2} + 162 \)

Invariants

Base field: $\Q_{3}$
Degree $d$ : $12$
Ramification exponent $e$ : $3$
Residue field degree $f$ : $4$
Discriminant exponent $c$ : $20$
Discriminant root field: $\Q_{3}(\sqrt{*})$
Root number: $-1$
$|\Aut(K/\Q_{ 3 })|$: $2$
This field is not Galois over $\Q_{3}$.

Intermediate fields

$\Q_{3}(\sqrt{*})$, 3.4.0.1, 3.6.10.6

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:3.4.0.1 $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{4} - x + 2 \)
Relative Eisenstein polynomial:$ x^{3} + \left(9 t^{3} + 9 t^{2} - 9\right) x^{2} + \left(-9 t^{3} - 9\right) x - 6 t^{3} - 9 t^{2} - 3 t - 9 \in\Q_{3}(t)[x]$

Invariants of the Galois closure

Galois group:$C_2.S_3^2$ (as 12T39)
Inertia group:Intransitive group isomorphic to $C_3:S_3$
Unramified degree:$4$
Tame degree:$2$
Wild slopes:[3/2, 5/2]
Galois mean slope:$37/18$
Galois splitting model:$x^{12} - 144 x^{6} + 2592$