Properties

Label 3.12.19.38
Base \(\Q_{3}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(19\)
Galois group $C_3^2:D_4$ (as 12T38)

Related objects

Learn more about

Defining polynomial

\( x^{12} + 3 x^{10} - 3 x^{8} - 3 \)

Invariants

Base field: $\Q_{3}$
Degree $d$ : $12$
Ramification exponent $e$ : $12$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $19$
Discriminant root field: $\Q_{3}(\sqrt{3*})$
Root number: $i$
$|\Aut(K/\Q_{ 3 })|$: $2$
This field is not Galois over $\Q_{3}$.

Intermediate fields

$\Q_{3}(\sqrt{3})$, 3.4.3.2, 3.6.9.8

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{3}$
Relative Eisenstein polynomial:\( x^{12} + 3 x^{10} - 3 x^{8} - 3 \)

Invariants of the Galois closure

Galois group:$C_3^2:D_4$ (as 12T38)
Inertia group:$C_3\times (C_3 : C_4)$
Unramified degree:$2$
Tame degree:$4$
Wild slopes:[3/2, 2]
Galois mean slope:$7/4$
Galois splitting model:$x^{12} - 2 x^{9} + 36 x^{6} + 28 x^{3} - 2$