Properties

Label 3.12.19.32
Base \(\Q_{3}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(19\)
Galois group $C_3\times C_3:D_4$ (as 12T42)

Related objects

Learn more about

Defining polynomial

\( x^{12} - 9 x^{11} + 9 x^{10} - 9 x^{9} - 3 x^{8} - 9 x^{7} - 12 x^{6} - 9 x^{4} - 12 x^{3} - 6 \)

Invariants

Base field: $\Q_{3}$
Degree $d$ : $12$
Ramification exponent $e$ : $12$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $19$
Discriminant root field: $\Q_{3}(\sqrt{3})$
Root number: $i$
$|\Aut(K/\Q_{ 3 })|$: $6$
This field is not Galois over $\Q_{3}$.

Intermediate fields

$\Q_{3}(\sqrt{3*})$, 3.4.3.1, 3.6.9.15

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{3}$
Relative Eisenstein polynomial:\( x^{12} - 9 x^{11} + 9 x^{10} - 9 x^{9} - 3 x^{8} - 9 x^{7} - 12 x^{6} - 9 x^{4} - 12 x^{3} - 6 \)

Invariants of the Galois closure

Galois group:$C_3\times C_3:D_4$ (as 12T42)
Inertia group:$C_3\times (C_3 : C_4)$
Unramified degree:$2$
Tame degree:$4$
Wild slopes:[3/2, 2]
Galois mean slope:$7/4$
Galois splitting model:$x^{12} - 10 x^{9} + 30 x^{6} - 16 x^{3} + 4$