Properties

Label 3.12.18.88
Base \(\Q_{3}\)
Degree \(12\)
e \(6\)
f \(2\)
c \(18\)
Galois group $C_{12}$ (as 12T1)

Related objects

Learn more about

Defining polynomial

\( x^{12} + 21 x^{11} + 21 x^{10} - 39 x^{9} + 9 x^{8} - 36 x^{7} - 3 x^{6} + 18 x^{5} + 27 x^{4} - 27 x - 36 \)

Invariants

Base field: $\Q_{3}$
Degree $d$ : $12$
Ramification exponent $e$ : $6$
Residue field degree $f$ : $2$
Discriminant exponent $c$ : $18$
Discriminant root field: $\Q_{3}(\sqrt{*})$
Root number: $-1$
$|\Gal(K/\Q_{ 3 })|$: $12$
This field is Galois and abelian over $\Q_{3}$.

Intermediate fields

$\Q_{3}(\sqrt{*})$, 3.3.4.1, 3.4.2.2, 3.6.8.6

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{3}(\sqrt{*})$ $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{2} - x + 2 \)
Relative Eisenstein polynomial:$ x^{6} + 12 t x^{5} + \left(6 t + 3\right) x^{4} + \left(-6 t + 6\right) x^{3} + \left(9 t - 9\right) x^{2} + \left(-9 t - 9\right) x - 3 t - 9 \in\Q_{3}(t)[x]$

Invariants of the Galois closure

Galois group:$C_{12}$ (as 12T1)
Inertia group:Intransitive group isomorphic to $C_6$
Unramified degree:$2$
Tame degree:$2$
Wild slopes:[2]
Galois mean slope:$3/2$
Galois splitting model:$x^{12} - 84 x^{10} - 28 x^{9} + 2646 x^{8} + 1764 x^{7} - 37975 x^{6} - 37044 x^{5} + 233583 x^{4} + 285376 x^{3} - 410571 x^{2} - 547428 x - 141659$