Properties

Label 3.12.18.78
Base \(\Q_{3}\)
Degree \(12\)
e \(6\)
f \(2\)
c \(18\)
Galois group $S_3^2$ (as 12T16)

Related objects

Learn more about

Defining polynomial

\( x^{12} - 15 x^{11} - 24 x^{10} - 15 x^{9} - 9 x^{7} + 21 x^{6} + 18 x^{5} - 9 x^{4} - 36 x^{3} + 36 \)

Invariants

Base field: $\Q_{3}$
Degree $d$ : $12$
Ramification exponent $e$ : $6$
Residue field degree $f$ : $2$
Discriminant exponent $c$ : $18$
Discriminant root field: $\Q_{3}$
Root number: $1$
$|\Aut(K/\Q_{ 3 })|$: $6$
This field is not Galois over $\Q_{3}$.

Intermediate fields

$\Q_{3}(\sqrt{*})$, $\Q_{3}(\sqrt{3})$, $\Q_{3}(\sqrt{3*})$, 3.4.2.1, 3.6.9.16 x3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{3}(\sqrt{*})$ $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{2} - x + 2 \)
Relative Eisenstein polynomial:$ x^{6} + \left(-6 t + 9\right) x^{5} + 6 x^{4} + \left(9 t + 6\right) x^{3} + \left(9 t + 9\right) x - 9 t - 3 \in\Q_{3}(t)[x]$

Invariants of the Galois closure

Galois group:$S_3^2$ (as 12T16)
Inertia group:Intransitive group isomorphic to $C_3\times S_3$
Unramified degree:$2$
Tame degree:$2$
Wild slopes:[3/2, 2]
Galois mean slope:$31/18$
Galois splitting model:$x^{12} - 12 x^{10} + 54 x^{8} - 88 x^{6} - 39 x^{4} + 180 x^{2} + 4$