Properties

Label 3.12.18.64
Base \(\Q_{3}\)
Degree \(12\)
e \(6\)
f \(2\)
c \(18\)
Galois group $C_2\times C_3:S_3.C_2$ (as 12T40)

Related objects

Learn more about

Defining polynomial

\( x^{12} + 12 x^{10} - 12 x^{9} - 9 x^{8} - 9 x^{7} - 9 x^{6} - 9 x^{5} - 9 x^{4} + 9 x^{3} + 9 \)

Invariants

Base field: $\Q_{3}$
Degree $d$ : $12$
Ramification exponent $e$ : $6$
Residue field degree $f$ : $2$
Discriminant exponent $c$ : $18$
Discriminant root field: $\Q_{3}$
Root number: $-1$
$|\Aut(K/\Q_{ 3 })|$: $2$
This field is not Galois over $\Q_{3}$.

Intermediate fields

$\Q_{3}(\sqrt{*})$, $\Q_{3}(\sqrt{3})$, $\Q_{3}(\sqrt{3*})$, 3.4.2.1, 3.6.8.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{3}(\sqrt{*})$ $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{2} - x + 2 \)
Relative Eisenstein polynomial:$ x^{6} + \left(-3 t - 3\right) x^{5} + \left(-3 t + 3\right) x^{4} + \left(3 t - 3\right) x^{3} - 3 t - 3 \in\Q_{3}(t)[x]$

Invariants of the Galois closure

Galois group:$C_2\times C_3:S_3.C_2$ (as 12T40)
Inertia group:Intransitive group isomorphic to $C_3\times C_6$
Unramified degree:$4$
Tame degree:$2$
Wild slopes:[2, 2]
Galois mean slope:$11/6$
Galois splitting model:$x^{12} - 6 x^{10} + 45 x^{8} - 108 x^{7} + 126 x^{6} - 108 x^{5} + 153 x^{4} - 324 x^{3} + 540 x^{2} - 432 x + 144$