Properties

Label 3.12.18.57
Base \(\Q_{3}\)
Degree \(12\)
e \(6\)
f \(2\)
c \(18\)
Galois group $C_3\times S_3^2$ (as 12T70)

Related objects

Learn more about

Defining polynomial

\( x^{12} + 36 x^{11} + 6 x^{10} - 21 x^{9} - 18 x^{8} - 36 x^{7} + 9 x^{6} - 18 x^{5} + 27 x^{4} + 27 x^{3} + 27 x + 36 \)

Invariants

Base field: $\Q_{3}$
Degree $d$ : $12$
Ramification exponent $e$ : $6$
Residue field degree $f$ : $2$
Discriminant exponent $c$ : $18$
Discriminant root field: $\Q_{3}$
Root number: $1$
$|\Aut(K/\Q_{ 3 })|$: $3$
This field is not Galois over $\Q_{3}$.

Intermediate fields

$\Q_{3}(\sqrt{*})$, $\Q_{3}(\sqrt{3})$, $\Q_{3}(\sqrt{3*})$, 3.4.2.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{3}(\sqrt{*})$ $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{2} - x + 2 \)
Relative Eisenstein polynomial:$ x^{6} + \left(-6 t + 3\right) x^{5} + \left(-9 t + 3\right) x^{4} + \left(9 t + 3\right) x^{3} + \left(9 t + 9\right) x - 3 t - 12 \in\Q_{3}(t)[x]$

Invariants of the Galois closure

Galois group:$C_3\times S_3^2$ (as 12T70)
Inertia group:Intransitive group isomorphic to $C_3^2\times S_3$
Unramified degree:$2$
Tame degree:$2$
Wild slopes:[3/2, 2, 2]
Galois mean slope:$103/54$
Galois splitting model:$x^{12} - 12 x^{10} - 12 x^{9} + 54 x^{8} + 108 x^{7} - 52 x^{6} - 324 x^{5} - 255 x^{4} + 216 x^{3} + 504 x^{2} + 324 x + 73$