Properties

Label 3.12.16.8
Base \(\Q_{3}\)
Degree \(12\)
e \(3\)
f \(4\)
c \(16\)
Galois group 12T173

Related objects

Learn more about

Defining polynomial

\( x^{12} + 90 x^{11} + 315 x^{10} - 84 x^{9} - 225 x^{8} - 243 x^{7} - 9 x^{6} + 54 x^{5} - 243 x^{4} - 135 x^{3} - 162 x^{2} + 243 x - 162 \)

Invariants

Base field: $\Q_{3}$
Degree $d$ : $12$
Ramification exponent $e$ : $3$
Residue field degree $f$ : $4$
Discriminant exponent $c$ : $16$
Discriminant root field: $\Q_{3}$
Root number: $1$
$|\Aut(K/\Q_{ 3 })|$: $1$
This field is not Galois over $\Q_{3}$.

Intermediate fields

$\Q_{3}(\sqrt{*})$, 3.4.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:3.4.0.1 $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{4} - x + 2 \)
Relative Eisenstein polynomial:$ x^{3} + \left(3 t^{3} - 3 t^{2} + 3 t - 3\right) x^{2} - 3 t^{3} + 3 t^{2} + 3 t \in\Q_{3}(t)[x]$

Invariants of the Galois closure

Galois group:12T173
Inertia group:Intransitive group isomorphic to $C_3^4$
Unramified degree:$8$
Tame degree:$1$
Wild slopes:[2, 2, 2, 2]
Galois mean slope:$160/81$
Galois splitting model:$x^{12} - 12 x^{10} - 24 x^{9} - 54 x^{8} - 120 x^{7} + 52 x^{6} + 360 x^{5} + 513 x^{4} + 872 x^{3} + 1656 x^{2} + 1632 x + 496$