Properties

Label 3.12.16.45
Base \(\Q_{3}\)
Degree \(12\)
e \(3\)
f \(4\)
c \(16\)
Galois group $C_3\times C_3:S_3.C_2$ (as 12T73)

Related objects

Learn more about

Defining polynomial

\( x^{12} + 102 x^{11} + 207 x^{10} + 192 x^{9} + 108 x^{8} - 216 x^{7} - 306 x^{6} - 189 x^{5} + 162 x^{4} - 27 x^{3} - 324 x^{2} - 324 \)

Invariants

Base field: $\Q_{3}$
Degree $d$ : $12$
Ramification exponent $e$ : $3$
Residue field degree $f$ : $4$
Discriminant exponent $c$ : $16$
Discriminant root field: $\Q_{3}(\sqrt{*})$
Root number: $1$
$|\Aut(K/\Q_{ 3 })|$: $3$
This field is not Galois over $\Q_{3}$.

Intermediate fields

$\Q_{3}(\sqrt{*})$, 3.4.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:3.4.0.1 $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{4} - x + 2 \)
Relative Eisenstein polynomial:$ x^{3} + \left(12 t^{3} + 6 t^{2} + 6 t - 12\right) x^{2} + \left(-9 t^{3} - 9 t^{2} - 9 t\right) x - 9 t^{3} - 12 t^{2} - 3 t + 3 \in\Q_{3}(t)[x]$

Invariants of the Galois closure

Galois group:$C_3\times C_3:S_3.C_2$ (as 12T73)
Inertia group:Intransitive group isomorphic to $C_3^3$
Unramified degree:$4$
Tame degree:$1$
Wild slopes:[2, 2, 2]
Galois mean slope:$52/27$
Galois splitting model:$x^{12} + 12 x^{10} - 12 x^{9} + 54 x^{8} - 108 x^{7} + 230 x^{6} - 324 x^{5} + 813 x^{4} - 696 x^{3} + 1098 x^{2} - 1116 x + 1057$