Properties

Label 3.12.16.35
Base \(\Q_{3}\)
Degree \(12\)
e \(3\)
f \(4\)
c \(16\)
Galois group $C_3\times (C_3 : C_4)$ (as 12T19)

Related objects

Learn more about

Defining polynomial

\( x^{12} + 96 x^{11} - 864 x^{10} - 45 x^{9} - 189 x^{8} - 891 x^{7} - 252 x^{6} + 297 x^{5} + 891 x^{4} - 162 x^{3} - 486 x^{2} + 729 x + 567 \)

Invariants

Base field: $\Q_{3}$
Degree $d$ : $12$
Ramification exponent $e$ : $3$
Residue field degree $f$ : $4$
Discriminant exponent $c$ : $16$
Discriminant root field: $\Q_{3}(\sqrt{*})$
Root number: $1$
$|\Aut(K/\Q_{ 3 })|$: $6$
This field is not Galois over $\Q_{3}$.

Intermediate fields

$\Q_{3}(\sqrt{*})$, 3.4.0.1, 3.6.8.8

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:3.4.0.1 $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{4} - x + 2 \)
Relative Eisenstein polynomial:$ x^{3} + \left(6 t^{3} - 6 t^{2} + 12 t\right) x^{2} + \left(9 t^{2} - 9 t - 9\right) x + 9 t^{3} + 9 t - 12 \in\Q_{3}(t)[x]$

Invariants of the Galois closure

Galois group:$C_3\times C_3:C_4$ (as 12T19)
Inertia group:Intransitive group isomorphic to $C_3^2$
Unramified degree:$4$
Tame degree:$1$
Wild slopes:[2, 2]
Galois mean slope:$16/9$
Galois splitting model:$x^{12} - 48 x^{10} + 828 x^{8} - 6440 x^{6} + 22932 x^{4} - 35280 x^{2} + 19208$