Properties

Label 3.12.16.30
Base \(\Q_{3}\)
Degree \(12\)
e \(3\)
f \(4\)
c \(16\)
Galois group $C_3 : C_4$ (as 12T5)

Related objects

Learn more about

Defining polynomial

\( x^{12} + 93 x^{11} + 351 x^{10} + 3 x^{9} + 126 x^{8} - 297 x^{7} + 171 x^{6} + 243 x^{5} - 324 x^{4} - 54 x^{3} + 162 x^{2} - 243 x + 324 \)

Invariants

Base field: $\Q_{3}$
Degree $d$ : $12$
Ramification exponent $e$ : $3$
Residue field degree $f$ : $4$
Discriminant exponent $c$ : $16$
Discriminant root field: $\Q_{3}(\sqrt{*})$
Root number: $1$
$|\Gal(K/\Q_{ 3 })|$: $12$
This field is Galois over $\Q_{3}$.

Intermediate fields

$\Q_{3}(\sqrt{*})$, 3.3.4.4 x3, 3.4.0.1, 3.6.8.5

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:3.4.0.1 $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{4} - x + 2 \)
Relative Eisenstein polynomial:$ x^{3} + \left(6 t^{3} + 6 t^{2} - 12\right) x^{2} + \left(9 t^{3} - 9 t^{2}\right) x + 12 t^{3} - 3 t + 6 \in\Q_{3}(t)[x]$

Invariants of the Galois closure

Galois group:$C_3:C_4$ (as 12T5)
Inertia group:Intransitive group isomorphic to $C_3$
Unramified degree:$4$
Tame degree:$1$
Wild slopes:[2]
Galois mean slope:$4/3$
Galois splitting model:$x^{12} - 3 x^{11} - 9 x^{10} - 25 x^{9} + 180 x^{8} - 1113 x^{7} + 6164 x^{6} - 10653 x^{5} + 30396 x^{4} - 21701 x^{3} + 15279 x^{2} - 4650 x + 2693$