Properties

Label 3.12.16.22
Base \(\Q_{3}\)
Degree \(12\)
e \(3\)
f \(4\)
c \(16\)
Galois group $(C_3\times C_3):C_4$ (as 12T17)

Related objects

Learn more about

Defining polynomial

\( x^{12} + 126 x^{11} + 288 x^{10} - 96 x^{9} + 315 x^{8} - 81 x^{7} + 135 x^{6} - 54 x^{5} - 324 x^{4} - 108 x^{3} + 243 x^{2} + 243 x + 324 \)

Invariants

Base field: $\Q_{3}$
Degree $d$ : $12$
Ramification exponent $e$ : $3$
Residue field degree $f$ : $4$
Discriminant exponent $c$ : $16$
Discriminant root field: $\Q_{3}(\sqrt{*})$
Root number: $1$
$|\Aut(K/\Q_{ 3 })|$: $6$
This field is not Galois over $\Q_{3}$.

Intermediate fields

$\Q_{3}(\sqrt{*})$, 3.4.0.1, 3.6.8.2 x3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:3.4.0.1 $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{4} - x + 2 \)
Relative Eisenstein polynomial:$ x^{3} + \left(-3 t^{3} + 3 t\right) x^{2} + 3 t^{2} + 3 \in\Q_{3}(t)[x]$

Invariants of the Galois closure

Galois group:$C_3:S_3.C_2$ (as 12T17)
Inertia group:Intransitive group isomorphic to $C_3^2$
Unramified degree:$4$
Tame degree:$1$
Wild slopes:[2, 2]
Galois mean slope:$16/9$
Galois splitting model:$x^{12} - 12 x^{10} + 54 x^{8} - 24 x^{7} + 124 x^{6} - 360 x^{5} + 783 x^{4} - 704 x^{3} + 468 x^{2} - 192 x + 46$