Properties

Label 3.12.14.9
Base \(\Q_{3}\)
Degree \(12\)
e \(6\)
f \(2\)
c \(14\)
Galois group $S_3 \times C_4$ (as 12T11)

Related objects

Learn more about

Defining polynomial

\( x^{12} + 6 x^{11} + 12 x^{10} - 3 x^{9} + 12 x^{6} - 9 x^{5} + 9 x^{4} - 9 x^{3} - 9 x^{2} - 9 \)

Invariants

Base field: $\Q_{3}$
Degree $d$ : $12$
Ramification exponent $e$ : $6$
Residue field degree $f$ : $2$
Discriminant exponent $c$ : $14$
Discriminant root field: $\Q_{3}(\sqrt{*})$
Root number: $1$
$|\Aut(K/\Q_{ 3 })|$: $4$
This field is not Galois over $\Q_{3}$.

Intermediate fields

$\Q_{3}(\sqrt{*})$, 3.3.3.1, 3.4.2.2, 3.6.6.4

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{3}(\sqrt{*})$ $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{2} - x + 2 \)
Relative Eisenstein polynomial:$ x^{6} + 3 x^{5} + \left(-3 t + 3\right) x^{4} - 3 t x^{3} + \left(3 t + 3\right) x^{2} + 3 t \in\Q_{3}(t)[x]$

Invariants of the Galois closure

Galois group:$C_4\times S_3$ (as 12T11)
Inertia group:Intransitive group isomorphic to $S_3$
Unramified degree:$4$
Tame degree:$2$
Wild slopes:[3/2]
Galois mean slope:$7/6$
Galois splitting model:$x^{12} - 6 x^{11} + 15 x^{10} - 11 x^{9} - 27 x^{8} + 69 x^{7} - 40 x^{6} - 45 x^{5} + 57 x^{4} + 8 x^{3} - 24 x^{2} - 3 x + 1$