Defining polynomial
| \( x^{12} + 12 x^{11} - 6 x^{10} + 6 x^{9} - 12 x^{8} + 12 x^{6} - 9 x^{4} - 9 \) |
Invariants
| Base field: | $\Q_{3}$ |
| Degree $d$ : | $12$ |
| Ramification exponent $e$ : | $6$ |
| Residue field degree $f$ : | $2$ |
| Discriminant exponent $c$ : | $14$ |
| Discriminant root field: | $\Q_{3}(\sqrt{*})$ |
| Root number: | $-1$ |
| $|\Aut(K/\Q_{ 3 })|$: | $3$ |
| This field is not Galois over $\Q_{3}$. | |
Intermediate fields
| $\Q_{3}(\sqrt{*})$, 3.4.2.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
| Unramified subfield: | $\Q_{3}(\sqrt{*})$ $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{2} - x + 2 \) |
| Relative Eisenstein polynomial: | $ x^{6} - 3 x^{5} + 3 t x^{4} - 3 t x^{3} - 3 t x^{2} - 3 t + 3 \in\Q_{3}(t)[x]$ |
Invariants of the Galois closure
| Galois group: | $C_3\times C_3:S_3.C_2$ (as 12T73) |
| Inertia group: | Intransitive group isomorphic to $C_3:S_3$ |
| Unramified degree: | $6$ |
| Tame degree: | $2$ |
| Wild slopes: | [3/2, 3/2] |
| Galois mean slope: | $25/18$ |
| Galois splitting model: | $x^{12} + 84 x^{10} - 140 x^{9} + 1974 x^{8} - 7980 x^{7} + 23534 x^{6} - 105252 x^{5} + 710451 x^{4} - 1394344 x^{3} + 1069278 x^{2} - 1545852 x + 2418199$ |