Properties

Label 3.12.14.1
Base \(\Q_{3}\)
Degree \(12\)
e \(6\)
f \(2\)
c \(14\)
Galois group $(C_3\times C_3):C_4$ (as 12T17)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} - 6 x^{8} - 6 x^{6} + 18 x^{4} + 36 x^{2} + 18\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $12$
Ramification exponent $e$: $6$
Residue field degree $f$: $2$
Discriminant exponent $c$: $14$
Discriminant root field: $\Q_{3}(\sqrt{2})$
Root number: $-1$
$\card{ \Aut(K/\Q_{ 3 }) }$: $6$
This field is not Galois over $\Q_{3}.$
Visible slopes:$[3/2]$

Intermediate fields

$\Q_{3}(\sqrt{2})$, 3.4.2.2, 3.6.6.2 x3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{3}(\sqrt{2})$ $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{2} + 2 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{6} + 3 t x^{2} + 3 t \) $\ \in\Q_{3}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$2z^{2} + 1$,$z^{3} + 2$
Associated inertia:$1$,$1$
Indices of inseparability:$[2, 0]$

Invariants of the Galois closure

Galois group:$C_3^2:C_4$ (as 12T17)
Inertia group:Intransitive group isomorphic to $C_3:S_3$
Wild inertia group:$C_3^2$
Unramified degree:$2$
Tame degree:$2$
Wild slopes:$[3/2, 3/2]$
Galois mean slope:$25/18$
Galois splitting model:$x^{12} + 12 x^{10} - 8 x^{9} + 78 x^{8} - 72 x^{7} + 308 x^{6} - 288 x^{5} + 711 x^{4} - 592 x^{3} + 924 x^{2} - 816 x + 526$