Properties

Label 3.12.12.23
Base \(\Q_{3}\)
Degree \(12\)
e \(3\)
f \(4\)
c \(12\)
Galois group $S_3 \times C_4$ (as 12T11)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} + 6 x^{11} + 12 x^{10} + 12 x^{9} + 189 x^{8} + 108 x^{7} + 324 x^{6} + 648 x^{5} + 891 x^{4} + 918 x^{3} + 648 x^{2} + 324 x + 81\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $12$
Ramification exponent $e$: $3$
Residue field degree $f$: $4$
Discriminant exponent $c$: $12$
Discriminant root field: $\Q_{3}(\sqrt{2})$
Root number: $-1$
$\card{ \Aut(K/\Q_{ 3 }) }$: $4$
This field is not Galois over $\Q_{3}.$
Visible slopes:$[3/2]$

Intermediate fields

$\Q_{3}(\sqrt{2})$, 3.3.3.2, 3.4.0.1, 3.6.6.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:3.4.0.1 $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{4} + 2 x^{3} + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{3} + \left(3 t + 3\right) x^{2} + 3 x + 3 \) $\ \in\Q_{3}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 2$
Associated inertia:$1$
Indices of inseparability:$[1, 0]$

Invariants of the Galois closure

Galois group:$C_4\times S_3$ (as 12T11)
Inertia group:Intransitive group isomorphic to $S_3$
Wild inertia group:$C_3$
Unramified degree:$4$
Tame degree:$2$
Wild slopes:$[3/2]$
Galois mean slope:$7/6$
Galois splitting model:$x^{12} - 5 x^{9} + 15 x^{6} - 15 x^{3} + 5$