# Properties

 Label 3.12.12.12 Base $$\Q_{3}$$ Degree $$12$$ e $$3$$ f $$4$$ c $$12$$ Galois group $C_2\times C_3:S_3.C_2$ (as 12T41)

# Related objects

## Defining polynomial

 $$x^{12} + 165 x^{10} - 312 x^{9} - 288 x^{8} - 180 x^{7} - 36 x^{6} - 135 x^{5} - 243 x^{4} + 54 x^{3} + 81 x^{2} + 81 x - 162$$

## Invariants

 Base field: $\Q_{3}$ Degree $d$ : $12$ Ramification exponent $e$ : $3$ Residue field degree $f$ : $4$ Discriminant exponent $c$ : $12$ Discriminant root field: $\Q_{3}(\sqrt{*})$ Root number: $-1$ $|\Aut(K/\Q_{ 3 })|$: $2$ This field is not Galois over $\Q_{3}$.

## Intermediate fields

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

## Unramified/totally ramified tower

 Unramified subfield: 3.4.0.1 $\cong \Q_{3}(t)$ where $t$ is a root of $$x^{4} - x + 2$$ Relative Eisenstein polynomial: $x^{3} + \left(3 t^{3} - 3 t\right) x^{2} + \left(3 t^{3} - 3 t^{2} - 3 t + 3\right) x + 3 t^{3} - 3 t^{2} - 3 t + 3 \in\Q_{3}(t)[x]$

## Invariants of the Galois closure

 Galois group: $C_2\times C_3:S_3.C_2$ (as 12T41) Inertia group: Intransitive group isomorphic to $C_3:S_3$ Unramified degree: $4$ Tame degree: $2$ Wild slopes: [3/2, 3/2] Galois mean slope: $25/18$ Galois splitting model: $x^{12} - 4 x^{9} - 6 x^{6} + 4 x^{3} + 1$