# Properties

 Label 3.12.12.10 Base $$\Q_{3}$$ Degree $$12$$ e $$3$$ f $$4$$ c $$12$$ Galois group 12T173

# Related objects

## Defining polynomial

 $$x^{12} + 9 x^{11} + 36 x^{10} - 72 x^{9} + 18 x^{8} + 45 x^{7} + 99 x^{6} + 54 x^{5} + 81 x^{4} - 81 x^{3} + 81 x^{2} - 81 x + 81$$

## Invariants

 Base field: $\Q_{3}$ Degree $d$ : $12$ Ramification exponent $e$ : $3$ Residue field degree $f$ : $4$ Discriminant exponent $c$ : $12$ Discriminant root field: $\Q_{3}$ Root number: $1$ $|\Aut(K/\Q_{ 3 })|$: $1$ This field is not Galois over $\Q_{3}$.

## Intermediate fields

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

## Unramified/totally ramified tower

 Unramified subfield: 3.4.0.1 $\cong \Q_{3}(t)$ where $t$ is a root of $$x^{4} - x + 2$$ Relative Eisenstein polynomial: $x^{3} + \left(-3 t^{3} + 3 t^{2} + 3 t + 3\right) x^{2} - 3 t^{3} x + 3 \in\Q_{3}(t)[x]$

## Invariants of the Galois closure

 Galois group: 12T173 Inertia group: Intransitive group isomorphic to $C_3:(C_3^3:C_2)$ Unramified degree: $4$ Tame degree: $2$ Wild slopes: [3/2, 3/2, 3/2, 3/2] Galois mean slope: $241/162$ Galois splitting model: $x^{12} - 12 x^{10} - 8 x^{9} + 54 x^{8} + 72 x^{7} - 101 x^{6} - 216 x^{5} + 39 x^{4} + 286 x^{3} + 63 x^{2} - 210 x - 137$