Defining polynomial
\( x^{11} + x^{2} - x + 1 \) |
Invariants
Base field: | $\Q_{3}$ |
Degree $d$: | $11$ |
Ramification exponent $e$: | $1$ |
Residue field degree $f$: | $11$ |
Discriminant exponent $c$: | $0$ |
Discriminant root field: | $\Q_{3}$ |
Root number: | $1$ |
$|\Gal(K/\Q_{ 3 })|$: | $11$ |
This field is Galois and abelian over $\Q_{3}.$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q_{ 3 }$. |
Unramified/totally ramified tower
Unramified subfield: | 3.11.0.1 $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{11} + x^{2} - x + 1 \) |
Relative Eisenstein polynomial: | $ x - 3 \in\Q_{3}(t)[x]$ |