Properties

Label 29.7.6.6
Base \(\Q_{29}\)
Degree \(7\)
e \(7\)
f \(1\)
c \(6\)
Galois group $C_7$ (as 7T1)

Related objects

Learn more about

Defining polynomial

\( x^{7} - 464 \)

Invariants

Base field: $\Q_{29}$
Degree $d$ : $7$
Ramification exponent $e$ : $7$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $6$
Discriminant root field: $\Q_{29}$
Root number: $1$
$|\Gal(K/\Q_{ 29 })|$: $7$
This field is Galois and abelian over $\Q_{29}$.

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 29 }$.

Unramified/totally ramified tower

Unramified subfield:$\Q_{29}$
Relative Eisenstein polynomial:\( x^{7} - 464 \)

Invariants of the Galois closure

Galois group:$C_7$ (as 7T1)
Inertia group:$C_7$
Unramified degree:$1$
Tame degree:$7$
Wild slopes:None
Galois mean slope:$6/7$
Galois splitting model:Not computed