Properties

Label 29.4.0.1
Base \(\Q_{29}\)
Degree \(4\)
e \(1\)
f \(4\)
c \(0\)
Galois group $C_4$ (as 4T1)

Related objects

Learn more about

Defining polynomial

\(x^{4} - x + 19\)  Toggle raw display

Invariants

Base field: $\Q_{29}$
Degree $d$: $4$
Ramification exponent $e$: $1$
Residue field degree $f$: $4$
Discriminant exponent $c$: $0$
Discriminant root field: $\Q_{29}(\sqrt{2})$
Root number: $1$
$|\Gal(K/\Q_{ 29 })|$: $4$
This field is Galois and abelian over $\Q_{29}.$

Intermediate fields

$\Q_{29}(\sqrt{2})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:29.4.0.1 $\cong \Q_{29}(t)$ where $t$ is a root of \( x^{4} - x + 19 \)  Toggle raw display
Relative Eisenstein polynomial:\( x - 29 \)$\ \in\Q_{29}(t)[x]$  Toggle raw display

Invariants of the Galois closure

Galois group:$C_4$ (as 4T1)
Inertia group:trivial
Unramified degree:$4$
Tame degree:$1$
Wild slopes:None
Galois mean slope:$0$
Galois splitting model:$x^{4} - x^{3} - 6 x^{2} + x + 1$