Properties

Label 29.12.8.1
Base \(\Q_{29}\)
Degree \(12\)
e \(3\)
f \(4\)
c \(8\)
Galois group $C_3 : C_4$ (as 12T5)

Related objects

Learn more about

Defining polynomial

\( x^{12} - 87 x^{9} + 2523 x^{6} - 24389 x^{3} + 4851240379 \)

Invariants

Base field: $\Q_{29}$
Degree $d$ : $12$
Ramification exponent $e$ : $3$
Residue field degree $f$ : $4$
Discriminant exponent $c$ : $8$
Discriminant root field: $\Q_{29}(\sqrt{*})$
Root number: $1$
$|\Gal(K/\Q_{ 29 })|$: $12$
This field is Galois over $\Q_{29}$.

Intermediate fields

$\Q_{29}(\sqrt{*})$, 29.3.2.1 x3, 29.4.0.1, 29.6.4.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:29.4.0.1 $\cong \Q_{29}(t)$ where $t$ is a root of \( x^{4} - x + 19 \)
Relative Eisenstein polynomial:$ x^{3} - 29 t^{3} \in\Q_{29}(t)[x]$

Invariants of the Galois closure

Galois group:$C_3:C_4$ (as 12T5)
Inertia group:Intransitive group isomorphic to $C_3$
Unramified degree:$4$
Tame degree:$3$
Wild slopes:None
Galois mean slope:$2/3$
Galois splitting model:Not computed