Defining polynomial
\( x^{8} - 23 x^{4} + 3703 \) |
Invariants
Base field: | $\Q_{23}$ |
Degree $d$: | $8$ |
Ramification exponent $e$: | $4$ |
Residue field degree $f$: | $2$ |
Discriminant exponent $c$: | $6$ |
Discriminant root field: | $\Q_{23}(\sqrt{5})$ |
Root number: | $-1$ |
$|\Aut(K/\Q_{ 23 })|$: | $4$ |
This field is not Galois over $\Q_{23}.$ |
Intermediate fields
$\Q_{23}(\sqrt{5})$, 23.4.2.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | $\Q_{23}(\sqrt{5})$ $\cong \Q_{23}(t)$ where $t$ is a root of \( x^{2} - x + 7 \) |
Relative Eisenstein polynomial: | $ x^{4} - 23 t \in\Q_{23}(t)[x]$ |
Invariants of the Galois closure
Galois group: | $OD_{16}$ (as 8T7) |
Inertia group: | Intransitive group isomorphic to $C_4$ |
Unramified degree: | $4$ |
Tame degree: | $4$ |
Wild slopes: | None |
Galois mean slope: | $3/4$ |
Galois splitting model: | Not computed |