Properties

Label 23.14.7.2
Base \(\Q_{23}\)
Degree \(14\)
e \(2\)
f \(7\)
c \(7\)
Galois group $C_{14}$ (as 14T1)

Related objects

Learn more about

Defining polynomial

\( x^{14} - 148035889 x^{2} + 27238603576 \)

Invariants

Base field: $\Q_{23}$
Degree $d$ : $14$
Ramification exponent $e$ : $2$
Residue field degree $f$ : $7$
Discriminant exponent $c$ : $7$
Discriminant root field: $\Q_{23}(\sqrt{23*})$
Root number: $-i$
$|\Gal(K/\Q_{ 23 })|$: $14$
This field is Galois and abelian over $\Q_{23}$.

Intermediate fields

$\Q_{23}(\sqrt{23*})$, 23.7.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:23.7.0.1 $\cong \Q_{23}(t)$ where $t$ is a root of \( x^{7} - x + 8 \)
Relative Eisenstein polynomial:$ x^{2} - 23 t \in\Q_{23}(t)[x]$

Invariants of the Galois closure

Galois group:$C_{14}$ (as 14T1)
Inertia group:Intransitive group isomorphic to $C_2$
Unramified degree:$7$
Tame degree:$2$
Wild slopes:None
Galois mean slope:$1/2$
Galois splitting model:Not computed