Base \(\Q_{23}\)
Degree \(12\)
e \(2\)
f \(6\)
c \(6\)
Galois group $C_6\times C_2$ (as 12T2)

Related objects

Learn more about

Defining polynomial

\( x^{12} + 365010 x^{6} - 6436343 x^{2} + 33308075025 \)


Base field: $\Q_{23}$
Degree $d$ : $12$
Ramification exponent $e$ : $2$
Residue field degree $f$ : $6$
Discriminant exponent $c$ : $6$
Discriminant root field: $\Q_{23}$
Root number: $1$
$|\Gal(K/\Q_{ 23 })|$: $12$
This field is Galois and abelian over $\Q_{23}$.

Intermediate fields

$\Q_{23}(\sqrt{*})$, $\Q_{23}(\sqrt{23})$, $\Q_{23}(\sqrt{23*})$,,,,,

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield: $\cong \Q_{23}(t)$ where $t$ is a root of \( x^{6} - x + 15 \)
Relative Eisenstein polynomial:$ x^{2} - 23 t^{2} \in\Q_{23}(t)[x]$

Invariants of the Galois closure

Galois group:$C_2\times C_6$ (as 12T2)
Inertia group:Intransitive group isomorphic to $C_2$
Unramified degree:$6$
Tame degree:$2$
Wild slopes:None
Galois mean slope:$1/2$
Galois splitting model:Not computed