Defining polynomial
| \( x^{12} + 6578 x^{6} + 62236321 \) |
Invariants
| Base field: | $\Q_{23}$ |
| Degree $d$ : | $12$ |
| Ramification exponent $e$ : | $6$ |
| Residue field degree $f$ : | $2$ |
| Discriminant exponent $c$ : | $10$ |
| Discriminant root field: | $\Q_{23}$ |
| Root number: | $1$ |
| $|\Gal(K/\Q_{ 23 })|$: | $12$ |
| This field is Galois over $\Q_{23}$. | |
Intermediate fields
| $\Q_{23}(\sqrt{*})$, $\Q_{23}(\sqrt{23})$, $\Q_{23}(\sqrt{23*})$, 23.3.2.1 x3, 23.4.2.1, 23.6.4.1, 23.6.5.1 x3, 23.6.5.2 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
| Unramified subfield: | $\Q_{23}(\sqrt{*})$ $\cong \Q_{23}(t)$ where $t$ is a root of \( x^{2} - x + 7 \) |
| Relative Eisenstein polynomial: | $ x^{6} - 23 t^{6} \in\Q_{23}(t)[x]$ |
Invariants of the Galois closure
| Galois group: | $D_6$ (as 12T3) |
| Inertia group: | Intransitive group isomorphic to $C_6$ |
| Unramified degree: | $2$ |
| Tame degree: | $6$ |
| Wild slopes: | None |
| Galois mean slope: | $5/6$ |
| Galois splitting model: | $x^{12} + 6578 x^{6} + 62236321$ |