Properties

Label 23.12.0.1
Base \(\Q_{23}\)
Degree \(12\)
e \(1\)
f \(12\)
c \(0\)
Galois group $C_{12}$ (as 12T1)

Related objects

Learn more about

Defining polynomial

\( x^{12} + x^{2} - 3 x + 7 \)

Invariants

Base field: $\Q_{23}$
Degree $d$ : $12$
Ramification exponent $e$ : $1$
Residue field degree $f$ : $12$
Discriminant exponent $c$ : $0$
Discriminant root field: $\Q_{23}(\sqrt{*})$
Root number: $1$
$|\Gal(K/\Q_{ 23 })|$: $12$
This field is Galois and abelian over $\Q_{23}$.

Intermediate fields

$\Q_{23}(\sqrt{*})$, 23.3.0.1, 23.4.0.1, 23.6.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:23.12.0.1 $\cong \Q_{23}(t)$ where $t$ is a root of \( x^{12} + x^{2} - 3 x + 7 \)
Relative Eisenstein polynomial:$ x - 23 \in\Q_{23}(t)[x]$

Invariants of the Galois closure

Galois group:$C_{12}$ (as 12T1)
Inertia group:Trivial
Unramified degree:$12$
Tame degree:$1$
Wild slopes:None
Galois mean slope:$0$
Galois splitting model:$x^{12} - x^{11} - 44 x^{10} + 23 x^{9} + 608 x^{8} - 288 x^{7} - 3367 x^{6} + 1647 x^{5} + 7459 x^{4} - 2633 x^{3} - 7037 x^{2} + 1034 x + 2209$