Defining polynomial
\(x^{9} + x^{4} + 1\) ![]() |
Invariants
Base field: | $\Q_{2}$ |
Degree $d$: | $9$ |
Ramification exponent $e$: | $1$ |
Residue field degree $f$: | $9$ |
Discriminant exponent $c$: | $0$ |
Discriminant root field: | $\Q_{2}$ |
Root number: | $1$ |
$|\Gal(K/\Q_{ 2 })|$: | $9$ |
This field is Galois and abelian over $\Q_{2}.$ |
Intermediate fields
2.3.0.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | 2.9.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{9} + x^{4} + 1 \) ![]() |
Relative Eisenstein polynomial: | \( x - 2 \)$\ \in\Q_{2}(t)[x]$ ![]() |