Defining polynomial
\(x^{8} + 28 x^{4} + 144\) ![]() |
Invariants
Base field: | $\Q_{2}$ |
Degree $d$: | $8$ |
Ramification exponent $e$: | $2$ |
Residue field degree $f$: | $4$ |
Discriminant exponent $c$: | $8$ |
Discriminant root field: | $\Q_{2}$ |
Root number: | $1$ |
$|\Gal(K/\Q_{ 2 })|$: | $8$ |
This field is Galois and abelian over $\Q_{2}.$ |
Intermediate fields
$\Q_{2}(\sqrt{5})$, $\Q_{2}(\sqrt{-1})$, $\Q_{2}(\sqrt{-5})$, 2.4.0.1, 2.4.4.1, 2.4.4.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | 2.4.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{4} - x + 1 \) ![]() |
Relative Eisenstein polynomial: | \( x^{2} + \left(2 t^{3} + 2 t^{2} + 2 t + 2\right) x + 2 t^{3} + 2 t \)$\ \in\Q_{2}(t)[x]$ ![]() |
Invariants of the Galois closure
Galois group: | $C_2\times C_4$ (as 8T2) |
Inertia group: | Intransitive group isomorphic to $C_2$ |
Unramified degree: | $4$ |
Tame degree: | $1$ |
Wild slopes: | [2] |
Galois mean slope: | $1$ |
Galois splitting model: | $x^{8} - x^{6} + x^{4} - x^{2} + 1$ |