Properties

Label 2.8.30.29
Base \(\Q_{2}\)
Degree \(8\)
e \(8\)
f \(1\)
c \(30\)
Galois group $((C_8 : C_2):C_2):C_2$ (as 8T27)

Related objects

Learn more about

Defining polynomial

\( x^{8} + 8 x^{7} + 24 x^{2} + 16 x + 14 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $8$
Ramification exponent $e$ : $8$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $30$
Discriminant root field: $\Q_{2}(\sqrt{-1})$
Root number: $i$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{2})$, 2.4.11.4

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{8} + 8 x^{7} + 24 x^{2} + 16 x + 14 \)

Invariants of the Galois closure

Galois group:$C_2\wr C_4$ (as 8T27)
Inertia group:$((C_8 : C_2):C_2):C_2$
Unramified degree:$1$
Tame degree:$1$
Wild slopes:[2, 3, 7/2, 4, 17/4, 19/4]
Galois mean slope:$137/32$
Galois splitting model:$x^{8} - 12 x^{6} + 34 x^{4} + 12 x^{2} - 49$