Defining polynomial
| \( x^{8} + 16 x^{6} + 8 x^{4} + 368 \) |
Invariants
| Base field: | $\Q_{2}$ |
| Degree $d$ : | $8$ |
| Ramification exponent $e$ : | $8$ |
| Residue field degree $f$ : | $1$ |
| Discriminant exponent $c$ : | $28$ |
| Discriminant root field: | $\Q_{2}(\sqrt{-1})$ |
| Root number: | $-i$ |
| $|\Aut(K/\Q_{ 2 })|$: | $2$ |
| This field is not Galois over $\Q_{2}$. | |
Intermediate fields
| $\Q_{2}(\sqrt{2})$, 2.4.10.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
| Unramified subfield: | $\Q_{2}$ |
| Relative Eisenstein polynomial: | \( x^{8} - 8 x^{7} + 13940 x^{6} - 83528 x^{5} + 393632 x^{4} - 1017824 x^{3} + 1659872 x^{2} - 1506752 x + 972354 \) |
Invariants of the Galois closure
| Galois group: | $D_4:D_4$ (as 8T26) |
| Inertia group: | $Z_8 : Z_8^\times$ |
| Unramified degree: | $2$ |
| Tame degree: | $1$ |
| Wild slopes: | [2, 2, 3, 7/2, 9/2] |
| Galois mean slope: | $59/16$ |
| Galois splitting model: | $x^{8} - 8 x^{6} + 18 x^{4} - 25$ |