Properties

Label 2.8.28.78
Base \(\Q_{2}\)
Degree \(8\)
e \(8\)
f \(1\)
c \(28\)
Galois group $Z_8 : Z_8^\times$ (as 8T15)

Related objects

Learn more about

Defining polynomial

\( x^{8} + 12 x^{4} + 92 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $8$
Ramification exponent $e$ : $8$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $28$
Discriminant root field: $\Q_{2}(\sqrt{-1})$
Root number: $i$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{2})$, 2.4.10.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{8} - 8 x^{7} + 196 x^{6} - 1064 x^{5} + 6940 x^{4} - 20816 x^{3} - 666872 x^{2} + 1372624 x + 12839646 \)

Invariants of the Galois closure

Galois group:$C_8:C_2^2$ (as 8T15)
Inertia group:$D_{8}$
Unramified degree:$2$
Tame degree:$1$
Wild slopes:[2, 3, 7/2, 9/2]
Galois mean slope:$29/8$
Galois splitting model:$x^{8} + 12 x^{4} - 36$