Properties

Label 2.8.28.67
Base \(\Q_{2}\)
Degree \(8\)
e \(8\)
f \(1\)
c \(28\)
Galois group $QD_{16}$ (as 8T8)

Related objects

Learn more about

Defining polynomial

\( x^{8} + 8 x^{4} + 496 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $8$
Ramification exponent $e$ : $8$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $28$
Discriminant root field: $\Q_{2}(\sqrt{-1})$
Root number: $-i$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{2})$, 2.4.10.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{8} - 8 x^{7} + 28 x^{6} - 56 x^{5} + 520 x^{4} - 1856 x^{3} + 2728 x^{2} - 1808 x + 1569826 \)

Invariants of the Galois closure

Galois group:$SD_{16}$ (as 8T8)
Inertia group:$QD_{16}$
Unramified degree:$1$
Tame degree:$1$
Wild slopes:[2, 3, 7/2, 9/2]
Galois mean slope:$29/8$
Galois splitting model:$x^{8} - 2 x^{4} - 1$