Properties

Label 2.8.25.8
Base \(\Q_{2}\)
Degree \(8\)
e \(8\)
f \(1\)
c \(25\)
Galois group $C_2^3: C_4$ (as 8T21)

Related objects

Learn more about

Defining polynomial

\( x^{8} + 2 x^{4} + 4 x^{2} + 18 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $8$
Ramification exponent $e$ : $8$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $25$
Discriminant root field: $\Q_{2}(\sqrt{2})$
Root number: $1$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{-1})$, $\Q_{2}(\sqrt{-2})$, $\Q_{2}(\sqrt{2})$, 2.4.8.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{8} + 2 x^{4} + 4 x^{2} + 18 \)

Invariants of the Galois closure

Galois group:$C_2^2.D_4$ (as 8T21)
Inertia group:$C_2^3: C_4$
Unramified degree:$1$
Tame degree:$1$
Wild slopes:[2, 3, 7/2, 4, 17/4]
Galois mean slope:$61/16$
Galois splitting model:$x^{8} - 8 x^{6} + 34 x^{4} - 60 x^{2} + 50$