Properties

Label 2.8.24.79
Base \(\Q_{2}\)
Degree \(8\)
e \(8\)
f \(1\)
c \(24\)
Galois group $Z_8 : Z_8^\times$ (as 8T15)

Related objects

Learn more about

Defining polynomial

\( x^{8} + 16 x^{7} + 16 x^{4} + 80 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $8$
Ramification exponent $e$ : $8$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $24$
Discriminant root field: $\Q_{2}(\sqrt{*})$
Root number: $-1$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{-1})$, 2.4.8.6

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{8} + 130928 x^{7} - 909036 x^{6} + 2515232 x^{5} - 1790566 x^{4} - 4391672 x^{3} + 9655956 x^{2} - 7531480 x + 13518082 \)

Invariants of the Galois closure

Galois group:$C_8:C_2^2$ (as 8T15)
Inertia group:$Q_8:C_2$
Unramified degree:$2$
Tame degree:$1$
Wild slopes:[2, 2, 3, 4]
Galois mean slope:$25/8$
Galois splitting model:$x^{8} - 8 x^{6} + 20 x^{4} - 16 x^{2} + 5$