Properties

Label 2.8.24.70
Base \(\Q_{2}\)
Degree \(8\)
e \(8\)
f \(1\)
c \(24\)
Galois group $C_4\wr C_2$ (as 8T17)

Related objects

Learn more about

Defining polynomial

\( x^{8} + 60 x^{4} + 148 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $8$
Ramification exponent $e$ : $8$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $24$
Discriminant root field: $\Q_{2}(\sqrt{*})$
Root number: $-1$
$|\Aut(K/\Q_{ 2 })|$: $4$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{-1})$, 2.4.8.6

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{8} - 8 x^{7} - 2360 x^{6} + 14272 x^{5} + 1769974 x^{4} - 7175192 x^{3} + 8578996 x^{2} - 2769464 x + 156139994 \)

Invariants of the Galois closure

Galois group:$C_4\wr C_2$ (as 8T17)
Inertia group:$Q_8$
Unramified degree:$4$
Tame degree:$1$
Wild slopes:[2, 3, 4]
Galois mean slope:$3$
Galois splitting model:$x^{8} - 4 x^{4} + 20$