Properties

Label 2.8.24.6
Base \(\Q_{2}\)
Degree \(8\)
e \(8\)
f \(1\)
c \(24\)
Galois group $D_4$ (as 8T4)

Related objects

Learn more about

Defining polynomial

\( x^{8} + 44 x^{4} + 100 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $8$
Ramification exponent $e$ : $8$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $24$
Discriminant root field: $\Q_{2}$
Root number: $1$
$|\Gal(K/\Q_{ 2 })|$: $8$
This field is Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{-1})$, $\Q_{2}(\sqrt{-2*})$, $\Q_{2}(\sqrt{2*})$, 2.4.8.1, 2.4.11.20 x2, 2.4.11.11 x2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{8} - 8 x^{7} + 24 x^{6} - 32 x^{5} + 10 x^{4} + 24 x^{3} - 132 x^{2} + 216 x + 522 \)

Invariants of the Galois closure

Galois group:$D_4$ (as 8T4)
Inertia group:$D_4$
Unramified degree:$1$
Tame degree:$1$
Wild slopes:[2, 3, 4]
Galois mean slope:$3$
Galois splitting model:$x^{8} + 4 x^{6} + 18 x^{4} - 68 x^{2} + 49$