Properties

Label 2.8.24.30
Base \(\Q_{2}\)
Degree \(8\)
e \(8\)
f \(1\)
c \(24\)
Galois group $Q_8:C_2$ (as 8T11)

Related objects

Learn more about

Defining polynomial

\( x^{8} + 16 x^{7} + 16 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $8$
Ramification exponent $e$ : $8$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $24$
Discriminant root field: $\Q_{2}$
Root number: $1$
$|\Aut(K/\Q_{ 2 })|$: $4$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{-1})$, $\Q_{2}(\sqrt{-2})$, $\Q_{2}(\sqrt{2})$, 2.4.8.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{8} + 131072 x^{7} - 917212 x^{6} + 2747632 x^{5} - 4538898 x^{4} + 4435976 x^{3} - 2545348 x^{2} + 786728 x - 98926 \)

Invariants of the Galois closure

Galois group:$D_4:C_2$ (as 8T11)
Inertia group:$C_4\times C_2$
Unramified degree:$2$
Tame degree:$1$
Wild slopes:[2, 3, 4]
Galois mean slope:$3$
Galois splitting model:$x^{8} - 24 x^{6} + 216 x^{4} - 864 x^{2} + 1521$