Properties

Label 2.8.22.54
Base \(\Q_{2}\)
Degree \(8\)
e \(4\)
f \(2\)
c \(22\)
Galois group $QD_{16}$ (as 8T8)

Related objects

Learn more about

Defining polynomial

\( x^{8} + 10 x^{4} + 28 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $8$
Ramification exponent $e$ : $4$
Residue field degree $f$ : $2$
Discriminant exponent $c$ : $22$
Discriminant root field: $\Q_{2}(\sqrt{-1})$
Root number: $-i$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{*})$, 2.4.6.5

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}(\sqrt{*})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} - x + 1 \)
Relative Eisenstein polynomial:$ x^{4} + 30 t + 6 \in\Q_{2}(t)[x]$

Invariants of the Galois closure

Galois group:$SD_{16}$ (as 8T8)
Inertia group:Intransitive group isomorphic to $D_4$
Unramified degree:$2$
Tame degree:$1$
Wild slopes:[2, 3, 4]
Galois mean slope:$3$
Galois splitting model:$x^{8} + 10 x^{4} - 100$