Properties

Label 2.8.22.30
Base \(\Q_{2}\)
Degree \(8\)
e \(4\)
f \(2\)
c \(22\)
Galois group $C_8$ (as 8T1)

Related objects

Learn more about

Defining polynomial

\( x^{8} + 2 x^{4} + 16 x^{3} + 16 x + 52 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $8$
Ramification exponent $e$ : $4$
Residue field degree $f$ : $2$
Discriminant exponent $c$ : $22$
Discriminant root field: $\Q_{2}(\sqrt{*})$
Root number: $1$
$|\Gal(K/\Q_{ 2 })|$: $8$
This field is Galois and abelian over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{*})$, 2.4.6.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}(\sqrt{*})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} - x + 1 \)
Relative Eisenstein polynomial:$ x^{4} + 8 x^{3} + 8 x + 14 t + 10 \in\Q_{2}(t)[x]$

Invariants of the Galois closure

Galois group:$C_8$ (as 8T1)
Inertia group:Intransitive group isomorphic to $C_4$
Unramified degree:$2$
Tame degree:$1$
Wild slopes:[3, 4]
Galois mean slope:$11/4$
Galois splitting model:Does not exist