Properties

Label 2.8.22.134
Base \(\Q_{2}\)
Degree \(8\)
e \(8\)
f \(1\)
c \(22\)
Galois group $\textrm{GL(2,3)}$ (as 8T23)

Related objects

Learn more about

Defining polynomial

\( x^{8} + 4 x^{7} + 4 x^{2} + 2 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $8$
Ramification exponent $e$ : $8$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $22$
Discriminant root field: $\Q_{2}(\sqrt{*})$
Root number: $1$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

2.4.8.8

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{8} + 4 x^{7} + 4 x^{2} + 2 \)

Invariants of the Galois closure

Galois group:$\GL(2,3)$ (as 8T23)
Inertia group:$\SL(2,3)$
Unramified degree:$2$
Tame degree:$3$
Wild slopes:[8/3, 8/3, 7/2]
Galois mean slope:$17/6$
Galois splitting model:$x^{8} - 4 x^{7} + 4 x^{6} - 24 x^{3} + 20 x^{2} - 8 x + 2$