Properties

Label 2.8.22.112
Base \(\Q_{2}\)
Degree \(8\)
e \(8\)
f \(1\)
c \(22\)
Galois group $C_2^2 \wr C_2$ (as 8T18)

Related objects

Learn more about

Defining polynomial

\( x^{8} + 8 x^{7} + 48 x^{5} + 80 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $8$
Ramification exponent $e$ : $8$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $22$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$|\Aut(K/\Q_{ 2 })|$: $4$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{-*})$, 2.4.8.5, 2.4.9.6, 2.4.9.7

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{8} + 6012 x^{7} - 112800 x^{6} + 1121752 x^{5} - 3479210 x^{4} + 4996384 x^{3} - 3738092 x^{2} + 1445680 x - 203002 \)

Invariants of the Galois closure

Galois group:$C_2^2\wr C_2$ (as 8T18)
Inertia group:$D_4\times C_2$
Unramified degree:$2$
Tame degree:$1$
Wild slopes:[2, 2, 3, 7/2]
Galois mean slope:$23/8$
Galois splitting model:$x^{8} + 8 x^{6} + 6 x^{4} + 8 x^{2} + 1$