Properties

Label 2.8.22.102
Base \(\Q_{2}\)
Degree \(8\)
e \(8\)
f \(1\)
c \(22\)
Galois group $D_4\times C_2$ (as 8T9)

Related objects

Learn more about

Defining polynomial

\( x^{8} + 8 x^{7} + 16 x^{5} + 144 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $8$
Ramification exponent $e$ : $8$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $22$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$|\Aut(K/\Q_{ 2 })|$: $4$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{-1})$, $\Q_{2}(\sqrt{-2})$, $\Q_{2}(\sqrt{2})$, 2.4.8.2, 2.4.9.3, 2.4.9.4

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{8} + 58660 x^{7} - 407784 x^{6} + 2053392 x^{5} - 4417338 x^{4} - 3631744 x^{3} + 34213604 x^{2} - 214864768 x + 467060674 \)

Invariants of the Galois closure

Galois group:$C_2\times D_4$ (as 8T9)
Inertia group:$D_4$
Unramified degree:$2$
Tame degree:$1$
Wild slopes:[2, 3, 7/2]
Galois mean slope:$11/4$
Galois splitting model:$x^{8} - 4 x^{7} + 16 x^{6} - 32 x^{5} + 54 x^{4} - 56 x^{3} + 44 x^{2} - 16 x + 2$