Defining polynomial
| \( x^{8} + 8 x^{7} + 16 x^{5} + 144 \) |
Invariants
| Base field: | $\Q_{2}$ |
| Degree $d$ : | $8$ |
| Ramification exponent $e$ : | $8$ |
| Residue field degree $f$ : | $1$ |
| Discriminant exponent $c$ : | $22$ |
| Discriminant root field: | $\Q_{2}$ |
| Root number: | $-1$ |
| $|\Aut(K/\Q_{ 2 })|$: | $4$ |
| This field is not Galois over $\Q_{2}$. | |
Intermediate fields
| $\Q_{2}(\sqrt{-1})$, $\Q_{2}(\sqrt{-2})$, $\Q_{2}(\sqrt{2})$, 2.4.8.2, 2.4.9.3, 2.4.9.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
| Unramified subfield: | $\Q_{2}$ |
| Relative Eisenstein polynomial: | \( x^{8} + 58660 x^{7} - 407784 x^{6} + 2053392 x^{5} - 4417338 x^{4} - 3631744 x^{3} + 34213604 x^{2} - 214864768 x + 467060674 \) |