Properties

Label 2.8.20.95
Base \(\Q_{2}\)
Degree \(8\)
e \(8\)
f \(1\)
c \(20\)
Galois group $Z_8 : Z_8^\times$ (as 8T15)

Related objects

Learn more about

Defining polynomial

\( x^{8} + 20 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $8$
Ramification exponent $e$ : $8$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $20$
Discriminant root field: $\Q_{2}(\sqrt{*})$
Root number: $1$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{-*})$, 2.4.6.9

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{8} - 8 x^{7} + 58 x^{6} - 236 x^{5} + 860 x^{4} - 2016 x^{3} + 4228 x^{2} - 4968 x + 5726 \)

Invariants of the Galois closure

Galois group:$C_8:C_2^2$ (as 8T15)
Inertia group:$Q_8:C_2$
Unramified degree:$2$
Tame degree:$1$
Wild slopes:[2, 2, 3, 7/2]
Galois mean slope:$23/8$
Galois splitting model:$x^{8} + 20$