Properties

Label 2.8.20.79
Base \(\Q_{2}\)
Degree \(8\)
e \(8\)
f \(1\)
c \(20\)
Galois group $C_2^4:C_6$ (as 8T33)

Related objects

Learn more about

Defining polynomial

\( x^{8} + 8 x^{7} + 16 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $8$
Ramification exponent $e$ : $8$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $20$
Discriminant root field: $\Q_{2}$
Root number: $1$
$|\Aut(K/\Q_{ 2 })|$: $1$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{-1})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{8} + 3340 x^{7} + 56 x^{6} + 4444 x^{5} + 28418 x^{4} + 27296 x^{3} + 112852 x^{2} - 42960 x + 104850 \)

Invariants of the Galois closure

Galois group:$C_2^2\wr C_2:C_3$ (as 8T33)
Inertia group:$C_2^2 \wr C_2$
Unramified degree:$3$
Tame degree:$1$
Wild slopes:[2, 2, 2, 3, 3]
Galois mean slope:$43/16$
Galois splitting model:$x^{8} + 4 x^{6} - 12 x^{5} + 22 x^{4} - 24 x^{3} + 44 x^{2} - 24 x + 18$