Properties

Label 2.8.20.75
Base \(\Q_{2}\)
Degree \(8\)
e \(8\)
f \(1\)
c \(20\)
Galois group $C_2^3 : C_4 $ (as 8T19)

Related objects

Learn more about

Defining polynomial

\( x^{8} + 8 x^{6} + 16 x^{5} + 80 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $8$
Ramification exponent $e$ : $8$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $20$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{-1})$, 2.4.8.6

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{8} - 88 x^{7} + 2348 x^{6} - 7156 x^{5} + 16130 x^{4} - 26256 x^{3} + 28448 x^{2} - 20048 x + 8746 \)

Invariants of the Galois closure

Galois group:$C_2^2.D_4$ (as 8T19)
Inertia group:$D_4\times C_2$
Unramified degree:$2$
Tame degree:$1$
Wild slopes:[2, 3, 3]
Galois mean slope:$5/2$
Galois splitting model:$x^{8} - 4 x^{7} + 12 x^{6} - 20 x^{5} + 22 x^{4} - 16 x^{3} + 8 x^{2} + 2$