Defining polynomial
| \( x^{8} + 8 x^{6} + 64 x + 16 \) |
Invariants
| Base field: | $\Q_{2}$ |
| Degree $d$ : | $8$ |
| Ramification exponent $e$ : | $8$ |
| Residue field degree $f$ : | $1$ |
| Discriminant exponent $c$ : | $20$ |
| Discriminant root field: | $\Q_{2}$ |
| Root number: | $-1$ |
| $|\Aut(K/\Q_{ 2 })|$: | $4$ |
| This field is not Galois over $\Q_{2}$. | |
Intermediate fields
| $\Q_{2}(\sqrt{-*})$, $\Q_{2}(\sqrt{-2*})$, $\Q_{2}(\sqrt{2})$, 2.4.8.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
| Unramified subfield: | $\Q_{2}$ |
| Relative Eisenstein polynomial: | \( x^{8} + 20 x^{7} + 8644 x^{6} - 58348 x^{5} + 153742 x^{4} - 49640 x^{3} - 408288 x^{2} + 682832 x - 297202 \) |