Properties

Label 2.8.20.106
Base \(\Q_{2}\)
Degree \(8\)
e \(8\)
f \(1\)
c \(20\)
Galois group $C_2\wr A_4$ (as 8T38)

Related objects

Learn more about

Defining polynomial

\( x^{8} + 12 x^{6} + 60 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $8$
Ramification exponent $e$ : $8$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $20$
Discriminant root field: $\Q_{2}(\sqrt{-1})$
Root number: $-i$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

2.4.6.7

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{8} - 8 x^{7} + 7126 x^{6} - 42644 x^{5} + 235210 x^{4} - 656696 x^{3} + 1489948 x^{2} - 1780136 x + 989134 \)

Invariants of the Galois closure

Galois group:$C_2\wr A_4$ (as 8T38)
Inertia group:$(((C_4 \times C_2): C_2):C_2):C_2$
Unramified degree:$3$
Tame degree:$1$
Wild slopes:[2, 2, 2, 3, 3, 7/2]
Galois mean slope:$99/32$
Galois splitting model:$x^{8} - 2 x^{6} + 6 x^{4} - 6 x^{2} + 7$