Properties

Label 2.8.16.9
Base \(\Q_{2}\)
Degree \(8\)
e \(4\)
f \(2\)
c \(16\)
Galois group $S_4$ (as 8T14)

Related objects

Learn more about

Defining polynomial

\( x^{8} + 2 x^{4} + 8 x + 12 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $8$
Ramification exponent $e$ : $4$
Residue field degree $f$ : $2$
Discriminant exponent $c$ : $16$
Discriminant root field: $\Q_{2}$
Root number: $1$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{*})$, 2.4.8.7

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}(\sqrt{*})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} - x + 1 \)
Relative Eisenstein polynomial:$ x^{4} + 4 x + 6 t + 6 \in\Q_{2}(t)[x]$

Invariants of the Galois closure

Galois group:$S_4$ (as 8T14)
Inertia group:Intransitive group isomorphic to $A_4$
Unramified degree:$2$
Tame degree:$3$
Wild slopes:[8/3, 8/3]
Galois mean slope:$13/6$
Galois splitting model:$x^{8} + 2 x^{6} - 8 x^{5} + 13 x^{4} - 8 x^{3} + 6 x^{2} - 4 x + 3$